88 research outputs found

    Computing Substrates and Life

    No full text
    Alive matter distinguishes itself from inanimate matter by actively maintaining a high degree of inhomogenous organisation. Information processing is quintessential to this capability. The present paper inquires into the degree to which the information processing aspect of living systems can be abstracted from the physical medium of its implementation. Information processing serving to sustain the complex organisation of a living system faces both the harsh reality of real-time requirements and severe constraints on energy and material that can be expended on the task. This issue is of interest for the potential scope of Artificial Life and its interaction with Synthetic Biology. It is pertinent also for information technology. With regard to the latter aspect, the use of a living cell in a robot control architecture is considered

    Robot control with biological cells

    No full text
    At present there exists a large gap in size, performance, adaptability and robustness between natural and artificial information processors for performing coherent perception-action tasks under real-time constraints. Even the simplest organisms have an enviable capability of coping with an unknown dynamic environment. Robots, in contrast, are still clumsy if confronted with such complexity. This paper presents a bio-hybrid architecture developed for exploring an alternate approach to the control of autonomous robots. Circuits prepared from amoeboid plasmodia of the slime mold Physarum polycephalum are interfaced with an omnidirectional hexapod robot. Sensory signals from the macro-physical environment of the robot are transduced to cellular scale and processed using the unique micro-physical features of intracellular information processing. Conversely, the response form the cellular computation is amplified to yield a macroscopic output action in the environment mediated through the robot’s actuators

    Quantum Cognition based on an Ambiguous Representation Derived from a Rough Set Approximation

    Full text link
    Over the last years, in a series papers by Arrechi and others, a model for the cognitive processes involved in decision making has been proposed and investigated. The key element of this model is the expression of apprehension and judgement, basic cognitive process of decision making, as an inverse Bayes inference classifying the information content of neuron spike trains. For successive plural stimuli, it has been shown that this inference, equipped with basic non-algorithmic jumps, is affected by quantum-like characteristics. We show here that such a decision making process is related consistently with ambiguous representation by an observer within a universe of discourse. In our work ambiguous representation of an object or a stimuli is defined by a pair of maps from objects of a set to their representations, where these two maps are interrelated in a particular structure. The a priori and a posteriori hypotheses in Bayes inference are replaced by the upper and lower approximation, correspondingly, for the initial data sets each derived with respect to a map. We show further that due to the particular structural relation between the two maps, the logical structure of such combined approximations can only be expressed as an orthomodular lattice and therefore can be represented by a quantum rather than a Boolean logic. To our knowledge, this is the first investigation aiming to reveal the concrete logic structure of inverse Bayes inference in cognitive processes.Comment: 23 pages, 8 figures, original research pape

    Inverse square Levy walk emerging universally in goal-oriented tasks

    Full text link
    The Levy walk in which the frequency of occurrence of step lengths follows a power-law distribution, can be observed in the migratory behavior of organisms at various levels. Levy walks with power exponents close to 2 are observed, and the reasons are unclear. This study aims to propose a model that universally generates inverse square Levy walks (called Cauchy walks) and to identify the conditions under which Cauchy walks appear. We demonstrate that Cauchy walks emerge universally in goal-oriented tasks. We use the term "goal-oriented" when the goal is clear, but this can be achieved in different ways, which cannot be uniquely determined. We performed a simulation in which an agent observed the data generated from a probability distribution in a two-dimensional space and successively estimated the central coordinates of that probability distribution. The agent has a model of probability distribution as a hypothesis for data-generating distribution and can modify the model such that each time a data point is observed, thereby increasing the estimated probability of occurrence of the observed data. To achieve this, the center coordinates of the model must be moved closer to those of the observed data. However, in the case of a two-dimensional space, arbitrariness arises in the direction of correction of the center; this task is goal oriented. We analyze two cases: a strategy that allocates the amount of modification randomly in the x- and y-directions, and a strategy that determines allocation such that movement is minimized. The results reveal that when a random strategy is used, the Cauchy walk appears. When the minimum strategy is used, the Brownian walk appears. The presence or absence of the constraint of minimizing the amount of movement may be a factor that causes the difference between Brownian and Levy walks

    Fluctuation-Driven Flocking Movement in Three Dimensions and Scale-Free Correlation

    Get PDF
    Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of “topological distances” and “scale-free correlations” are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the “metric distance”). However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations
    corecore